MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. Grade 5 Titanium

535.0 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Elongation at Break, % 10
8.6 to 11
Fatigue Strength, MPa 70
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
40
Shear Strength, MPa 190
600 to 710
Tensile Strength: Ultimate (UTS), MPa 270
1000 to 1190
Tensile Strength: Yield (Proof), MPa 140
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 630
1610
Melting Onset (Solidus), °C 570
1650
Specific Heat Capacity, J/kg-K 910
560
Thermal Conductivity, W/m-K 100
6.8
Thermal Expansion, µm/m-K 24
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
4.4
Embodied Carbon, kg CO2/kg material 9.4
38
Embodied Energy, MJ/kg 160
610
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 28
62 to 75
Strength to Weight: Bending, points 35
50 to 56
Thermal Diffusivity, mm2/s 42
2.7
Thermal Shock Resistance, points 12
76 to 91

Alloy Composition

Aluminum (Al), % 91.5 to 93.6
5.5 to 6.8
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.050
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.4
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0.1 to 0.25
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4