MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. S31277 Stainless Steel

535.0 aluminum belongs to the aluminum alloys classification, while S31277 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is S31277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 10
45
Fatigue Strength, MPa 70
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Shear Strength, MPa 190
600
Tensile Strength: Ultimate (UTS), MPa 270
860
Tensile Strength: Yield (Proof), MPa 140
410

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 910
460
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 9.4
6.7
Embodied Energy, MJ/kg 160
90
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
320
Resilience: Unit (Modulus of Resilience), kJ/m3 150
410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 28
29
Strength to Weight: Bending, points 35
25
Thermal Shock Resistance, points 12
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 93.6
0
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20.5 to 23
Copper (Cu), % 0 to 0.050
0.5 to 1.5
Iron (Fe), % 0 to 0.15
35.5 to 46.2
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 3.0
Molybdenum (Mo), % 0
6.5 to 8.0
Nickel (Ni), % 0
26 to 28
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0