MakeItFrom.com
Menu (ESC)

5449 Aluminum vs. Titanium 6-7

5449 aluminum belongs to the aluminum alloys classification, while titanium 6-7 belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 5449 aluminum and the bottom bar is titanium 6-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 4.0 to 17
11
Fatigue Strength, MPa 78 to 120
530
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Shear Strength, MPa 130 to 190
610
Tensile Strength: Ultimate (UTS), MPa 210 to 330
1020
Tensile Strength: Yield (Proof), MPa 91 to 260
900

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
300
Melting Completion (Liquidus), °C 650
1700
Melting Onset (Solidus), °C 590
1650
Specific Heat Capacity, J/kg-K 900
520
Thermal Expansion, µm/m-K 23
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.8
5.1
Embodied Carbon, kg CO2/kg material 8.5
34
Embodied Energy, MJ/kg 150
540
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 29
110
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 480
3460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
32
Strength to Weight: Axial, points 22 to 33
56
Strength to Weight: Bending, points 29 to 39
44
Thermal Shock Resistance, points 9.4 to 15
66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.1 to 97.8
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.0090
Iron (Fe), % 0 to 0.7
0 to 0.25
Magnesium (Mg), % 1.6 to 2.6
0
Manganese (Mn), % 0.6 to 1.1
0
Molybdenum (Mo), % 0
6.5 to 7.5
Niobium (Nb), % 0
6.5 to 7.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.4
0
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.1
84.9 to 88
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0