MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. Commercially Pure Zirconium

5454 aluminum belongs to the aluminum alloys classification, while commercially pure zirconium belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is commercially pure zirconium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
98
Elongation at Break, % 2.3 to 18
18
Fatigue Strength, MPa 83 to 160
60
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
36
Tensile Strength: Ultimate (UTS), MPa 230 to 350
430
Tensile Strength: Yield (Proof), MPa 97 to 290
240

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Specific Heat Capacity, J/kg-K 900
270
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 24
5.5

Otherwise Unclassified Properties

Density, g/cm3 2.7
6.7
Embodied Water, L/kg 1180
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
65
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
290
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 23 to 36
18
Strength to Weight: Bending, points 30 to 41
19
Thermal Diffusivity, mm2/s 55
12
Thermal Shock Resistance, points 10 to 16
56

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.5 to 97.1
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.050 to 0.2
0 to 0.2
Copper (Cu), % 0 to 0.1
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 0.4
0 to 0.2
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0
Nitrogen (N), % 0
0 to 0.025
Oxygen (O), % 0
0 to 0.16
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
94.7 to 100
Residuals, % 0 to 0.15
0