MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. 5083 Aluminum

Both 5456 aluminum and 5083 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 11 to 18
1.1 to 17
Fatigue Strength, MPa 130 to 210
93 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190 to 210
170 to 220
Tensile Strength: Ultimate (UTS), MPa 320 to 340
290 to 390
Tensile Strength: Yield (Proof), MPa 150 to 250
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Corrosion, °C 65
65
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
29
Electrical Conductivity: Equal Weight (Specific), % IACS 97
96

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
95 to 860
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 33 to 35
29 to 40
Strength to Weight: Bending, points 38 to 40
36 to 44
Thermal Diffusivity, mm2/s 48
48
Thermal Shock Resistance, points 14 to 15
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 94.8
92.4 to 95.6
Chromium (Cr), % 0.050 to 0.2
0.050 to 0.25
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 0.4
Magnesium (Mg), % 4.7 to 5.5
4.0 to 4.9
Manganese (Mn), % 0.5 to 1.0
0.4 to 1.0
Silicon (Si), % 0 to 0.25
0 to 0.4
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants