MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. A206.0 Aluminum

Both 5456 aluminum and A206.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 11 to 18
4.2 to 10
Fatigue Strength, MPa 130 to 210
90 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190 to 210
260
Tensile Strength: Ultimate (UTS), MPa 320 to 340
390 to 440
Tensile Strength: Yield (Proof), MPa 150 to 250
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
670
Melting Onset (Solidus), °C 570
550
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
30
Electrical Conductivity: Equal Weight (Specific), % IACS 97
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 9.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
440 to 1000
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 33 to 35
36 to 41
Strength to Weight: Bending, points 38 to 40
39 to 43
Thermal Diffusivity, mm2/s 48
48
Thermal Shock Resistance, points 14 to 15
17 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 94.8
93.9 to 95.7
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
4.2 to 5.0
Iron (Fe), % 0 to 0.4
0 to 0.1
Magnesium (Mg), % 4.7 to 5.5
0 to 0.15
Manganese (Mn), % 0.5 to 1.0
0 to 0.2
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.25
0 to 0.050
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15