MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. C443.0 Aluminum

Both 5456 aluminum and C443.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 11 to 18
9.0
Fatigue Strength, MPa 130 to 210
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 190 to 210
130
Tensile Strength: Ultimate (UTS), MPa 320 to 340
230
Tensile Strength: Yield (Proof), MPa 150 to 250
100

Thermal Properties

Latent Heat of Fusion, J/g 390
470
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
37
Electrical Conductivity: Equal Weight (Specific), % IACS 97
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
17
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 33 to 35
24
Strength to Weight: Bending, points 38 to 40
31
Thermal Diffusivity, mm2/s 48
58
Thermal Shock Resistance, points 14 to 15
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 94.8
89.6 to 95.5
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 0 to 0.4
0 to 2.0
Magnesium (Mg), % 4.7 to 5.5
0 to 0.1
Manganese (Mn), % 0.5 to 1.0
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.25
4.5 to 6.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.25