MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. Grade N7M Nickel

5456 aluminum belongs to the aluminum alloys classification, while grade N7M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is grade N7M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 11 to 18
22
Fatigue Strength, MPa 130 to 210
190
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 320 to 340
590
Tensile Strength: Yield (Proof), MPa 150 to 250
310

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 640
1650
Melting Onset (Solidus), °C 570
1590
Specific Heat Capacity, J/kg-K 900
390
Thermal Expansion, µm/m-K 24
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
9.3
Embodied Carbon, kg CO2/kg material 9.0
16
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1170
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 33 to 35
18
Strength to Weight: Bending, points 38 to 40
17
Thermal Shock Resistance, points 14 to 15
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.050 to 0.2
0 to 1.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
0 to 3.0
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
30 to 33
Nickel (Ni), % 0
60.9 to 70
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0