MakeItFrom.com
Menu (ESC)

5456-O Aluminum vs. Annealed AISI 440B

5456-O aluminum belongs to the aluminum alloys classification, while annealed AISI 440B belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456-O aluminum and the bottom bar is annealed AISI 440B.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 18
18
Fatigue Strength, MPa 160
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 200
460
Tensile Strength: Ultimate (UTS), MPa 320
740
Tensile Strength: Yield (Proof), MPa 150
430

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Corrosion, °C 65
390
Maximum Temperature: Mechanical, °C 190
870
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 97
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1170
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 33
27
Strength to Weight: Bending, points 38
24
Thermal Diffusivity, mm2/s 48
6.1
Thermal Shock Resistance, points 14
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0.75 to 1.0
Chromium (Cr), % 0.050 to 0.2
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
78.2 to 83.3
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0