MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. 8090 Aluminum

Both 5457 aluminum and 8090 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 6.0 to 22
3.5 to 13
Fatigue Strength, MPa 55 to 98
91 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 130 to 210
340 to 490
Tensile Strength: Yield (Proof), MPa 50 to 190
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 660
660
Melting Onset (Solidus), °C 630
600
Specific Heat Capacity, J/kg-K 900
960
Thermal Conductivity, W/m-K 180
95 to 160
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
20
Electrical Conductivity: Equal Weight (Specific), % IACS 150
66

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.6
Embodied Energy, MJ/kg 160
170
Embodied Water, L/kg 1190
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
340 to 1330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 13 to 21
34 to 49
Strength to Weight: Bending, points 21 to 28
39 to 50
Thermal Diffusivity, mm2/s 72
36 to 60
Thermal Shock Resistance, points 5.7 to 9.0
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.8 to 99.05
93 to 98.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.2
1.0 to 1.6
Iron (Fe), % 0 to 0.1
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0.8 to 1.2
0.6 to 1.3
Manganese (Mn), % 0.15 to 0.45
0 to 0.1
Silicon (Si), % 0 to 0.080
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0 to 0.1
0 to 0.15