MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. EN 2.4879 Cast Nickel

5457 aluminum belongs to the aluminum alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.0 to 22
3.4
Fatigue Strength, MPa 55 to 98
110
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 130 to 210
490
Tensile Strength: Yield (Proof), MPa 50 to 190
270

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
1150
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 180
11
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.4
8.3
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1190
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
14
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 21
16
Strength to Weight: Bending, points 21 to 28
16
Thermal Diffusivity, mm2/s 72
2.8
Thermal Shock Resistance, points 5.7 to 9.0
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.8 to 99.05
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0
27 to 30
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.1
9.4 to 20.7
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.080
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
4.0 to 6.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0