MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. EN AC-44100 Aluminum

Both 5457 aluminum and EN AC-44100 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is EN AC-44100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 55
59
Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 6.0 to 22
4.9
Fatigue Strength, MPa 55 to 98
64
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 130 to 210
180
Tensile Strength: Yield (Proof), MPa 50 to 190
87

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
590
Melting Onset (Solidus), °C 630
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 180
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
34
Electrical Conductivity: Equal Weight (Specific), % IACS 150
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.5
Embodied Carbon, kg CO2/kg material 8.4
7.7
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1190
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
53
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
55
Strength to Weight: Axial, points 13 to 21
19
Strength to Weight: Bending, points 21 to 28
27
Thermal Diffusivity, mm2/s 72
58
Thermal Shock Resistance, points 5.7 to 9.0
8.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.8 to 99.05
84.4 to 89.5
Copper (Cu), % 0 to 0.2
0 to 0.15
Iron (Fe), % 0 to 0.1
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.8 to 1.2
0 to 0.1
Manganese (Mn), % 0.15 to 0.45
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.080
10.5 to 13.5
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.15
Residuals, % 0 to 0.1
0 to 0.15