MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. EN AC-47000 Aluminum

Both 5457 aluminum and EN AC-47000 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 55
60
Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 6.0 to 22
1.7
Fatigue Strength, MPa 55 to 98
68
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 130 to 210
180
Tensile Strength: Yield (Proof), MPa 50 to 190
97

Thermal Properties

Latent Heat of Fusion, J/g 400
570
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
590
Melting Onset (Solidus), °C 630
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 180
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
33
Electrical Conductivity: Equal Weight (Specific), % IACS 150
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.4
7.7
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1190
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
65
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 13 to 21
19
Strength to Weight: Bending, points 21 to 28
27
Thermal Diffusivity, mm2/s 72
55
Thermal Shock Resistance, points 5.7 to 9.0
8.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.8 to 99.05
82.1 to 89.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.2
0 to 1.0
Iron (Fe), % 0 to 0.1
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.8 to 1.2
0 to 0.35
Manganese (Mn), % 0.15 to 0.45
0.050 to 0.55
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.080
10.5 to 13.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.55
Residuals, % 0 to 0.1
0 to 0.25