MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. Grade C-5 Titanium

5457 aluminum belongs to the aluminum alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 55
310
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 6.0 to 22
6.7
Fatigue Strength, MPa 55 to 98
510
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 130 to 210
1000
Tensile Strength: Yield (Proof), MPa 50 to 190
940

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 660
1610
Melting Onset (Solidus), °C 630
1560
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 180
7.1
Thermal Expansion, µm/m-K 24
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 150
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.4
Embodied Carbon, kg CO2/kg material 8.4
38
Embodied Energy, MJ/kg 160
610
Embodied Water, L/kg 1190
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
66
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 13 to 21
63
Strength to Weight: Bending, points 21 to 28
50
Thermal Diffusivity, mm2/s 72
2.9
Thermal Shock Resistance, points 5.7 to 9.0
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.8 to 99.05
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.4
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 0 to 0.080
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0 to 0.050
3.5 to 4.5
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0 to 0.4