MakeItFrom.com
Menu (ESC)

5457-O Aluminum vs. Annealed S20910 Stainless Steel

5457-O aluminum belongs to the aluminum alloys classification, while annealed S20910 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457-O aluminum and the bottom bar is annealed S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32
230
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 22
39
Fatigue Strength, MPa 55
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 85
530
Tensile Strength: Ultimate (UTS), MPa 130
780
Tensile Strength: Yield (Proof), MPa 50
430

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 180
1080
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 630
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180
13
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.4
4.8
Embodied Energy, MJ/kg 160
68
Embodied Water, L/kg 1190
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
260
Resilience: Unit (Modulus of Resilience), kJ/m3 18
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13
28
Strength to Weight: Bending, points 21
24
Thermal Diffusivity, mm2/s 72
3.6
Thermal Shock Resistance, points 5.7
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.8 to 99.05
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.1
52.1 to 62.1
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.080
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0 to 0.050
0.1 to 0.3
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0