MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. EN AC-46100 Aluminum

Both 5652 aluminum and EN AC-46100 aluminum are aluminum alloys. They have 85% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 47 to 77
91
Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 6.8 to 25
1.0
Fatigue Strength, MPa 60 to 140
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 190 to 290
270
Tensile Strength: Yield (Proof), MPa 74 to 260
160

Thermal Properties

Latent Heat of Fusion, J/g 400
550
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 610
540
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
28
Electrical Conductivity: Equal Weight (Specific), % IACS 120
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.6
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
170
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 20 to 30
27
Strength to Weight: Bending, points 27 to 36
34
Thermal Diffusivity, mm2/s 57
44
Thermal Shock Resistance, points 8.4 to 13
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.8 to 97.7
80.4 to 88.5
Chromium (Cr), % 0.15 to 0.35
0 to 0.15
Copper (Cu), % 0 to 0.040
1.5 to 2.5
Iron (Fe), % 0 to 0.4
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 2.2 to 2.8
0 to 0.3
Manganese (Mn), % 0 to 0.010
0 to 0.55
Nickel (Ni), % 0
0 to 0.45
Silicon (Si), % 0 to 0.4
10 to 12
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 1.7
Residuals, % 0 to 0.15
0 to 0.25