MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. EN 1.4807 Stainless Steel

5657 aluminum belongs to the aluminum alloys classification, while EN 1.4807 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 50
140
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.6 to 15
4.5
Fatigue Strength, MPa 74 to 88
120
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 150 to 200
480
Tensile Strength: Yield (Proof), MPa 140 to 170
250

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 660
1390
Melting Onset (Solidus), °C 640
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 180
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.4
6.8
Embodied Energy, MJ/kg 160
97
Embodied Water, L/kg 1200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
18
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 20
17
Strength to Weight: Bending, points 23 to 28
17
Thermal Diffusivity, mm2/s 84
3.2
Thermal Shock Resistance, points 6.7 to 8.6
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 98.5 to 99.4
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0 to 0.1
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
36.6 to 46.7
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
34 to 36
Niobium (Nb), % 0
1.0 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.080
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.050
0