MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. N06255 Nickel

5657 aluminum belongs to the aluminum alloys classification, while N06255 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 6.6 to 15
45
Fatigue Strength, MPa 74 to 88
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 92 to 110
460
Tensile Strength: Ultimate (UTS), MPa 150 to 200
660
Tensile Strength: Yield (Proof), MPa 140 to 170
250

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 660
1470
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.4
9.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1200
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
230
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 15 to 20
22
Strength to Weight: Bending, points 23 to 28
20
Thermal Shock Resistance, points 6.7 to 8.6
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 98.5 to 99.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 0 to 0.1
0 to 1.2
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
6.0 to 24
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.080
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.050
0