MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. 7005 Aluminum

Both 5754 aluminum and 7005 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is 7005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 2.0 to 19
10 to 20
Fatigue Strength, MPa 66 to 140
100 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 120 to 190
120 to 230
Tensile Strength: Ultimate (UTS), MPa 200 to 330
200 to 400
Tensile Strength: Yield (Proof), MPa 80 to 280
95 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 600
610
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
140 to 170
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
35 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.7
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
32 to 57
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
65 to 850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 21 to 34
19 to 38
Strength to Weight: Bending, points 28 to 39
26 to 41
Thermal Diffusivity, mm2/s 54
54 to 65
Thermal Shock Resistance, points 8.9 to 14
8.7 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.2 to 97.4
91 to 94.7
Chromium (Cr), % 0 to 0.3
0.060 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 0.4
Magnesium (Mg), % 2.6 to 3.6
1.0 to 1.8
Manganese (Mn), % 0 to 0.5
0.2 to 0.7
Silicon (Si), % 0 to 0.4
0 to 0.35
Titanium (Ti), % 0 to 0.15
0.010 to 0.060
Zinc (Zn), % 0 to 0.2
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants