MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. EN AC-51500 Aluminum

Both 5754 aluminum and EN AC-51500 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 52 to 88
80
Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 2.0 to 19
5.6
Fatigue Strength, MPa 66 to 140
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 200 to 330
280
Tensile Strength: Yield (Proof), MPa 80 to 280
160

Thermal Properties

Latent Heat of Fusion, J/g 400
430
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
26
Electrical Conductivity: Equal Weight (Specific), % IACS 110
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.7
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
13
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
52
Strength to Weight: Axial, points 21 to 34
29
Strength to Weight: Bending, points 28 to 39
36
Thermal Diffusivity, mm2/s 54
49
Thermal Shock Resistance, points 8.9 to 14
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.2 to 97.4
89.8 to 93.1
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.4
0 to 0.25
Magnesium (Mg), % 2.6 to 3.6
4.7 to 6.0
Manganese (Mn), % 0 to 0.5
0.4 to 0.8
Silicon (Si), % 0 to 0.4
1.8 to 2.6
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.15