MakeItFrom.com
Menu (ESC)

5754 Aluminum vs. C31400 Bronze

5754 aluminum belongs to the aluminum alloys classification, while C31400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5754 aluminum and the bottom bar is C31400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 2.0 to 19
6.8 to 29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 120 to 190
180 to 240
Tensile Strength: Ultimate (UTS), MPa 200 to 330
270 to 420
Tensile Strength: Yield (Proof), MPa 80 to 280
78 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 650
1040
Melting Onset (Solidus), °C 600
1010
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
180
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
42
Electrical Conductivity: Equal Weight (Specific), % IACS 110
43

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.7
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 32
26 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 47 to 580
28 to 420
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 21 to 34
8.7 to 13
Strength to Weight: Bending, points 28 to 39
11 to 14
Thermal Diffusivity, mm2/s 54
54
Thermal Shock Resistance, points 8.9 to 14
9.6 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.2 to 97.4
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
87.5 to 90.5
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Magnesium (Mg), % 2.6 to 3.6
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0
0 to 0.7
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.2
5.8 to 11.2
Residuals, % 0 to 0.15
0 to 0.4