MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. 6262A Aluminum

Both 6005 aluminum and 6262A aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 9.5 to 17
4.5 to 11
Fatigue Strength, MPa 55 to 95
94 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 120 to 210
190 to 240
Tensile Strength: Ultimate (UTS), MPa 190 to 310
310 to 410
Tensile Strength: Yield (Proof), MPa 100 to 280
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 160
160
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 610
580
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 180 to 200
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
45
Electrical Conductivity: Equal Weight (Specific), % IACS 180
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 36
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 550
540 to 1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
49
Strength to Weight: Axial, points 20 to 32
31 to 41
Strength to Weight: Bending, points 28 to 38
36 to 44
Thermal Diffusivity, mm2/s 74 to 83
67
Thermal Shock Resistance, points 8.6 to 14
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Chromium (Cr), % 0 to 0.1
0.040 to 0.14
Copper (Cu), % 0 to 0.1
0.15 to 0.4
Iron (Fe), % 0 to 0.35
0 to 0.7
Magnesium (Mg), % 0.4 to 0.6
0.8 to 1.2
Manganese (Mn), % 0 to 0.1
0 to 0.15
Silicon (Si), % 0.6 to 0.9
0.4 to 0.8
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants