MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. EN 1.7729 Steel

6005 aluminum belongs to the aluminum alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 95
270
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.5 to 17
17
Fatigue Strength, MPa 55 to 95
500
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 210
560
Tensile Strength: Ultimate (UTS), MPa 190 to 310
910
Tensile Strength: Yield (Proof), MPa 100 to 280
750

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 160
430
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180 to 200
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 180
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.3
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1180
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 36
150
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 550
1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 32
32
Strength to Weight: Bending, points 28 to 38
27
Thermal Diffusivity, mm2/s 74 to 83
11
Thermal Shock Resistance, points 8.6 to 14
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0 to 0.1
0.9 to 1.2
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.35
94.8 to 97
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.6 to 0.9
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0