MakeItFrom.com
Menu (ESC)

6005 Aluminum vs. S40920 Stainless Steel

6005 aluminum belongs to the aluminum alloys classification, while S40920 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005 aluminum and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 95
150
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.5 to 17
22
Fatigue Strength, MPa 55 to 95
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 120 to 210
270
Tensile Strength: Ultimate (UTS), MPa 190 to 310
430
Tensile Strength: Yield (Proof), MPa 100 to 280
190

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 160
710
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180 to 200
26
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 180
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1180
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 36
78
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 550
97
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 32
15
Strength to Weight: Bending, points 28 to 38
16
Thermal Diffusivity, mm2/s 74 to 83
6.9
Thermal Shock Resistance, points 8.6 to 14
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 97.5 to 99
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
10.5 to 11.7
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.35
85.1 to 89.4
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.15 to 0.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0