MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. 2017A Aluminum

Both 6005A aluminum and 2017A aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 8.6 to 17
2.2 to 14
Fatigue Strength, MPa 55 to 110
92 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 120 to 180
120 to 270
Tensile Strength: Ultimate (UTS), MPa 190 to 300
200 to 460
Tensile Strength: Yield (Proof), MPa 100 to 270
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 600
510
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 180 to 190
150
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
34
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
90 to 570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 20 to 30
19 to 42
Strength to Weight: Bending, points 27 to 36
26 to 44
Thermal Diffusivity, mm2/s 72 to 79
56
Thermal Shock Resistance, points 8.6 to 13
8.9 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.5 to 99.1
91.3 to 95.5
Chromium (Cr), % 0 to 0.3
0 to 0.1
Copper (Cu), % 0 to 0.3
3.5 to 4.5
Iron (Fe), % 0 to 0.35
0 to 0.7
Magnesium (Mg), % 0.4 to 0.7
0.4 to 1.0
Manganese (Mn), % 0 to 0.5
0.4 to 1.0
Silicon (Si), % 0.5 to 0.9
0.2 to 0.8
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants