MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. B390.0 Aluminum

Both 6005A aluminum and B390.0 aluminum are aluminum alloys. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is B390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
76
Elongation at Break, % 8.6 to 17
0.88
Fatigue Strength, MPa 55 to 110
170
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
29
Tensile Strength: Ultimate (UTS), MPa 190 to 300
320
Tensile Strength: Yield (Proof), MPa 100 to 270
250

Thermal Properties

Latent Heat of Fusion, J/g 410
640
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
580
Melting Onset (Solidus), °C 600
580
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 180 to 190
130
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
27
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
410
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 20 to 30
32
Strength to Weight: Bending, points 27 to 36
38
Thermal Diffusivity, mm2/s 72 to 79
55
Thermal Shock Resistance, points 8.6 to 13
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.5 to 99.1
72.7 to 79.6
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
4.0 to 5.0
Iron (Fe), % 0 to 0.35
0 to 1.3
Magnesium (Mg), % 0.4 to 0.7
0.45 to 0.65
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0.5 to 0.9
16 to 18
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 1.5
Residuals, % 0 to 0.15
0 to 0.2