MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. EN 1.4945 Stainless Steel

6005A aluminum belongs to the aluminum alloys classification, while EN 1.4945 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 8.6 to 17
19 to 34
Fatigue Strength, MPa 55 to 110
230 to 350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 120 to 180
430 to 460
Tensile Strength: Ultimate (UTS), MPa 190 to 300
640 to 740
Tensile Strength: Yield (Proof), MPa 100 to 270
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 650
1490
Melting Onset (Solidus), °C 600
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180 to 190
14
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47 to 50
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 150 to 170
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.3
5.0
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
210 to 760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20 to 30
22 to 25
Strength to Weight: Bending, points 27 to 36
20 to 22
Thermal Diffusivity, mm2/s 72 to 79
3.7
Thermal Shock Resistance, points 8.6 to 13
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.5 to 99.1
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0 to 0.3
15.5 to 17.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 0 to 0.35
57.9 to 65.7
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 0.9
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0