MakeItFrom.com
Menu (ESC)

6005A Aluminum vs. Titanium 6-7

6005A aluminum belongs to the aluminum alloys classification, while titanium 6-7 belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 6005A aluminum and the bottom bar is titanium 6-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 8.6 to 17
11
Fatigue Strength, MPa 55 to 110
530
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Shear Strength, MPa 120 to 180
610
Tensile Strength: Ultimate (UTS), MPa 190 to 300
1020
Tensile Strength: Yield (Proof), MPa 100 to 270
900

Thermal Properties

Latent Heat of Fusion, J/g 410
410
Maximum Temperature: Mechanical, °C 170
300
Melting Completion (Liquidus), °C 650
1700
Melting Onset (Solidus), °C 600
1650
Specific Heat Capacity, J/kg-K 900
520
Thermal Expansion, µm/m-K 23
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
5.1
Embodied Carbon, kg CO2/kg material 8.3
34
Embodied Energy, MJ/kg 150
540
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
110
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 530
3460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
32
Strength to Weight: Axial, points 20 to 30
56
Strength to Weight: Bending, points 27 to 36
44
Thermal Shock Resistance, points 8.6 to 13
66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.5 to 99.1
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.0090
Iron (Fe), % 0 to 0.35
0 to 0.25
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0
6.5 to 7.5
Niobium (Nb), % 0
6.5 to 7.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0.5 to 0.9
0
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.1
84.9 to 88
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0