MakeItFrom.com
Menu (ESC)

6008 Aluminum vs. Nickel 617

6008 aluminum belongs to the aluminum alloys classification, while nickel 617 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6008 aluminum and the bottom bar is nickel 617.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.1 to 17
40
Fatigue Strength, MPa 55 to 88
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 120 to 170
510
Tensile Strength: Ultimate (UTS), MPa 200 to 290
740
Tensile Strength: Yield (Proof), MPa 100 to 220
280

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 620
1330
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 190
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 49
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 160
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.5
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 28
230
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 360
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 21 to 29
24
Strength to Weight: Bending, points 28 to 35
21
Thermal Diffusivity, mm2/s 77
3.5
Thermal Shock Resistance, points 9.0 to 13
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.5 to 99.1
0.8 to 1.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.3
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 0 to 0.3
0 to 0.5
Iron (Fe), % 0 to 0.35
0 to 3.0
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
44.5 to 62
Silicon (Si), % 0.5 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0