MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. EN 1.4595 Stainless Steel

6012 aluminum belongs to the aluminum alloys classification, while EN 1.4595 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is EN 1.4595 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.1 to 11
29
Fatigue Strength, MPa 55 to 100
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 130 to 190
310
Tensile Strength: Ultimate (UTS), MPa 220 to 320
470
Tensile Strength: Yield (Proof), MPa 110 to 260
250

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 160
30
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.4
Embodied Energy, MJ/kg 150
34
Embodied Water, L/kg 1170
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
110
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 22 to 32
17
Strength to Weight: Bending, points 29 to 37
17
Thermal Diffusivity, mm2/s 62
8.1
Thermal Shock Resistance, points 10 to 14
17

Alloy Composition

Aluminum (Al), % 92.2 to 98
0
Bismuth (Bi), % 0 to 0.7
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.3
14 to 16
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
81.3 to 85.8
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Niobium (Nb), % 0
0.2 to 0.6
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.6 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0