MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. EN AC-46600 Aluminum

Both 6012 aluminum and EN AC-46600 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
72
Elongation at Break, % 9.1 to 11
1.1
Fatigue Strength, MPa 55 to 100
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 220 to 320
180
Tensile Strength: Yield (Proof), MPa 110 to 260
110

Thermal Properties

Latent Heat of Fusion, J/g 400
490
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 570
560
Specific Heat Capacity, J/kg-K 890
890
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
29
Electrical Conductivity: Equal Weight (Specific), % IACS 140
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
81
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 22 to 32
18
Strength to Weight: Bending, points 29 to 37
25
Thermal Diffusivity, mm2/s 62
51
Thermal Shock Resistance, points 10 to 14
8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.2 to 98
85.6 to 92.4
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
1.5 to 2.5
Iron (Fe), % 0 to 0.5
0 to 0.8
Lead (Pb), % 0.4 to 2.0
0 to 0.25
Magnesium (Mg), % 0.6 to 1.2
0 to 0.35
Manganese (Mn), % 0.4 to 1.0
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0.6 to 1.4
6.0 to 8.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.3
0 to 1.0
Residuals, % 0 to 0.15
0 to 0.15