MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. EN 1.4658 Stainless Steel

6013 aluminum belongs to the aluminum alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 3.4 to 22
28
Fatigue Strength, MPa 98 to 140
530
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
81
Shear Strength, MPa 190 to 240
580
Tensile Strength: Ultimate (UTS), MPa 310 to 410
900
Tensile Strength: Yield (Proof), MPa 170 to 350
730

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
4.5
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
240
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
1280
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 41
32
Strength to Weight: Bending, points 37 to 44
26
Thermal Diffusivity, mm2/s 60
4.3
Thermal Shock Resistance, points 14 to 18
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.8 to 97.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
26 to 29
Cobalt (Co), % 0
0.5 to 2.0
Copper (Cu), % 0.6 to 1.1
0 to 1.0
Iron (Fe), % 0 to 0.5
50.9 to 63.7
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.6 to 1.0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0