MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. C61800 Bronze

6013 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 3.4 to 22
26
Fatigue Strength, MPa 98 to 140
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 190 to 240
310
Tensile Strength: Ultimate (UTS), MPa 310 to 410
740
Tensile Strength: Yield (Proof), MPa 170 to 350
310

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 650
1050
Melting Onset (Solidus), °C 580
1040
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 150
64
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
13
Electrical Conductivity: Equal Weight (Specific), % IACS 120
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.3
3.1
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
150
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 31 to 41
25
Strength to Weight: Bending, points 37 to 44
22
Thermal Diffusivity, mm2/s 60
18
Thermal Shock Resistance, points 14 to 18
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.8 to 97.8
8.5 to 11
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.6 to 1.1
86.9 to 91
Iron (Fe), % 0 to 0.5
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
0
Silicon (Si), % 0.6 to 1.0
0 to 0.1
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.020
Residuals, % 0 to 0.15
0 to 0.5