MakeItFrom.com
Menu (ESC)

6013-T6 Aluminum vs. 7075-T6 Aluminum

Both 6013-T6 aluminum and 7075-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6013-T6 aluminum and the bottom bar is 7075-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 9.1
7.9
Fatigue Strength, MPa 140
160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Shear Strength, MPa 240
330
Tensile Strength: Ultimate (UTS), MPa 410
560
Tensile Strength: Yield (Proof), MPa 350
480

Thermal Properties

Latent Heat of Fusion, J/g 410
380
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 580
480
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
98

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
42
Resilience: Unit (Modulus of Resilience), kJ/m3 900
1630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
46
Strength to Weight: Axial, points 41
51
Strength to Weight: Bending, points 44
50
Thermal Diffusivity, mm2/s 60
50
Thermal Shock Resistance, points 18
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.8 to 97.8
86.9 to 91.4
Chromium (Cr), % 0 to 0.1
0.18 to 0.28
Copper (Cu), % 0.6 to 1.1
1.2 to 2.0
Iron (Fe), % 0 to 0.5
0 to 0.5
Magnesium (Mg), % 0.8 to 1.2
2.1 to 2.9
Manganese (Mn), % 0.2 to 0.8
0 to 0.3
Silicon (Si), % 0.6 to 1.0
0 to 0.4
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.25
5.1 to 6.1
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15