MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. 1200 Aluminum

Both 6018 aluminum and 1200 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 9.0 to 9.1
1.1 to 28
Fatigue Strength, MPa 85 to 89
25 to 69
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 180
54 to 100
Tensile Strength: Ultimate (UTS), MPa 290 to 300
85 to 180
Tensile Strength: Yield (Proof), MPa 220 to 230
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 570
650
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
230
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
58
Electrical Conductivity: Equal Weight (Specific), % IACS 140
190

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.0
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
5.7 to 180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 28 to 29
8.7 to 19
Strength to Weight: Bending, points 34 to 35
16 to 26
Thermal Diffusivity, mm2/s 65
92
Thermal Shock Resistance, points 13
3.8 to 8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
99 to 100
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 1.0
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 0.050
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Titanium (Ti), % 0 to 0.2
0 to 0.050
Zinc (Zn), % 0 to 0.3
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15