MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. 3005 Aluminum

Both 6018 aluminum and 3005 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
70
Elongation at Break, % 9.0 to 9.1
1.1 to 16
Fatigue Strength, MPa 85 to 89
53 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 180
84 to 150
Tensile Strength: Ultimate (UTS), MPa 290 to 300
140 to 270
Tensile Strength: Yield (Proof), MPa 220 to 230
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 570
640
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
42
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
18 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
49
Strength to Weight: Axial, points 28 to 29
14 to 27
Strength to Weight: Bending, points 34 to 35
21 to 33
Thermal Diffusivity, mm2/s 65
64
Thermal Shock Resistance, points 13
6.0 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
95.7 to 98.8
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 0.15 to 0.4
0 to 0.3
Iron (Fe), % 0 to 0.7
0 to 0.7
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0.2 to 0.6
Manganese (Mn), % 0.3 to 0.8
1.0 to 1.5
Silicon (Si), % 0.5 to 1.2
0 to 0.6
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.3
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15