MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. 384.0 Aluminum

Both 6018 aluminum and 384.0 aluminum are aluminum alloys. They have 84% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is 384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
74
Elongation at Break, % 9.0 to 9.1
2.5
Fatigue Strength, MPa 85 to 89
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Shear Strength, MPa 170 to 180
200
Tensile Strength: Ultimate (UTS), MPa 290 to 300
330
Tensile Strength: Yield (Proof), MPa 220 to 230
170

Thermal Properties

Latent Heat of Fusion, J/g 400
550
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 570
530
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 170
96
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
22
Electrical Conductivity: Equal Weight (Specific), % IACS 140
69

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 8.2
7.4
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
49
Strength to Weight: Axial, points 28 to 29
32
Strength to Weight: Bending, points 34 to 35
37
Thermal Diffusivity, mm2/s 65
39
Thermal Shock Resistance, points 13
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
77.3 to 86.5
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
3.0 to 4.5
Iron (Fe), % 0 to 0.7
0 to 1.3
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0 to 0.1
Manganese (Mn), % 0.3 to 0.8
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0.5 to 1.2
10.5 to 12
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0 to 3.0
Residuals, % 0 to 0.15
0 to 0.5