MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. 443.0 Aluminum

Both 6018 aluminum and 443.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 9.0 to 9.1
5.6
Fatigue Strength, MPa 85 to 89
55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 170 to 180
96
Tensile Strength: Ultimate (UTS), MPa 290 to 300
150
Tensile Strength: Yield (Proof), MPa 220 to 230
65

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
580
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
38
Electrical Conductivity: Equal Weight (Specific), % IACS 140
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
30
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
52
Strength to Weight: Axial, points 28 to 29
16
Strength to Weight: Bending, points 34 to 35
23
Thermal Diffusivity, mm2/s 65
61
Thermal Shock Resistance, points 13
6.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
90.7 to 95.5
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 0.15 to 0.4
0 to 0.6
Iron (Fe), % 0 to 0.7
0 to 0.8
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0 to 0.050
Manganese (Mn), % 0.3 to 0.8
0 to 0.5
Silicon (Si), % 0.5 to 1.2
4.5 to 6.0
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.3
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.35