MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. 5154A Aluminum

Both 6018 aluminum and 5154A aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 9.0 to 9.1
1.1 to 19
Fatigue Strength, MPa 85 to 89
83 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 180
140 to 210
Tensile Strength: Ultimate (UTS), MPa 290 to 300
230 to 370
Tensile Strength: Yield (Proof), MPa 220 to 230
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
32
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
68 to 760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
51
Strength to Weight: Axial, points 28 to 29
24 to 38
Strength to Weight: Bending, points 34 to 35
31 to 43
Thermal Diffusivity, mm2/s 65
53
Thermal Shock Resistance, points 13
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
93.7 to 96.9
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 0.15 to 0.4
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.5
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
3.1 to 3.9
Manganese (Mn), % 0.3 to 0.8
0 to 0.5
Silicon (Si), % 0.5 to 1.2
0 to 0.5
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.3
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15