MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. EN 1.7710 Steel

6018 aluminum belongs to the aluminum alloys classification, while EN 1.7710 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is EN 1.7710 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
6.8 to 11
Fatigue Strength, MPa 85 to 89
500 to 620
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 290 to 300
930 to 1070
Tensile Strength: Yield (Proof), MPa 220 to 230
800 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 160
440
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
41
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.5
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.2
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1180
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
1680 to 2970
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28 to 29
33 to 38
Strength to Weight: Bending, points 34 to 35
27 to 30
Thermal Diffusivity, mm2/s 65
11
Thermal Shock Resistance, points 13
27 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.12 to 0.18
Chromium (Cr), % 0 to 0.1
1.3 to 1.8
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
95.1 to 97
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0.6 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.2
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0

Comparable Variants