MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. Grade M35-2 Nickel

6018 aluminum belongs to the aluminum alloys classification, while grade M35-2 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is grade M35-2 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
160
Elongation at Break, % 9.0 to 9.1
28
Fatigue Strength, MPa 85 to 89
160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
62
Tensile Strength: Ultimate (UTS), MPa 290 to 300
500
Tensile Strength: Yield (Proof), MPa 220 to 230
230

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
900
Melting Completion (Liquidus), °C 640
1280
Melting Onset (Solidus), °C 570
1230
Specific Heat Capacity, J/kg-K 890
430
Thermal Conductivity, W/m-K 170
22
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.2
8.1
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
120
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
170
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 48
21
Strength to Weight: Axial, points 28 to 29
16
Strength to Weight: Bending, points 34 to 35
16
Thermal Diffusivity, mm2/s 65
5.7
Thermal Shock Resistance, points 13
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.35
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
26 to 33
Iron (Fe), % 0 to 0.7
0 to 3.5
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.5
Nickel (Ni), % 0
59.1 to 74
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.2
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0