MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. SAE-AISI T5 Steel

6018 aluminum belongs to the aluminum alloys classification, while SAE-AISI T5 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is SAE-AISI T5 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 290 to 300
860 to 2140

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 640
1810
Melting Onset (Solidus), °C 570
1750
Specific Heat Capacity, J/kg-K 890
410
Thermal Conductivity, W/m-K 170
21
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.9
9.4
Embodied Carbon, kg CO2/kg material 8.2
11
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
140

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 48
21
Strength to Weight: Axial, points 28 to 29
25 to 63
Strength to Weight: Bending, points 34 to 35
21 to 39
Thermal Diffusivity, mm2/s 65
5.5
Thermal Shock Resistance, points 13
26 to 66

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.75 to 0.85
Chromium (Cr), % 0 to 0.1
3.8 to 5.0
Cobalt (Co), % 0
7.0 to 9.5
Copper (Cu), % 0.15 to 0.4
0 to 0.25
Iron (Fe), % 0 to 0.7
60.6 to 68.3
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0.2 to 0.4
Molybdenum (Mo), % 0
0.5 to 1.3
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.2
0.2 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
17.5 to 19
Vanadium (V), % 0
1.8 to 2.4
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0