MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. C44500 Brass

6018 aluminum belongs to the aluminum alloys classification, while C44500 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is C44500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 290 to 300
350
Tensile Strength: Yield (Proof), MPa 220 to 230
120

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 160
140
Melting Completion (Liquidus), °C 640
940
Melting Onset (Solidus), °C 570
900
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 170
110
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
25
Electrical Conductivity: Equal Weight (Specific), % IACS 140
27

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
65
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 28 to 29
12
Strength to Weight: Bending, points 34 to 35
13
Thermal Diffusivity, mm2/s 65
35
Thermal Shock Resistance, points 13
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
70 to 73
Iron (Fe), % 0 to 0.7
0 to 0.060
Lead (Pb), % 0.4 to 1.2
0 to 0.070
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0
Phosphorus (P), % 0
0.020 to 0.1
Silicon (Si), % 0.5 to 1.2
0
Tin (Sn), % 0
0.9 to 1.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
25.2 to 29.1
Residuals, % 0 to 0.15
0 to 0.4