MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. N12160 Nickel

6018 aluminum belongs to the aluminum alloys classification, while N12160 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is N12160 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.0 to 9.1
45
Fatigue Strength, MPa 85 to 89
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 170 to 180
500
Tensile Strength: Ultimate (UTS), MPa 290 to 300
710
Tensile Strength: Yield (Proof), MPa 220 to 230
270

Thermal Properties

Latent Heat of Fusion, J/g 400
360
Maximum Temperature: Mechanical, °C 160
1060
Melting Completion (Liquidus), °C 640
1330
Melting Onset (Solidus), °C 570
1280
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
11
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
90
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.2
8.5
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1180
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
260
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28 to 29
24
Strength to Weight: Bending, points 34 to 35
22
Thermal Diffusivity, mm2/s 65
2.8
Thermal Shock Resistance, points 13
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
26 to 30
Cobalt (Co), % 0
27 to 33
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
0 to 3.5
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
25 to 44.4
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.2
2.4 to 3.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0.2 to 0.8
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0