MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. R30155 Cobalt

6018 aluminum belongs to the aluminum alloys classification, while R30155 cobalt belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.0 to 9.1
34
Fatigue Strength, MPa 85 to 89
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 170 to 180
570
Tensile Strength: Ultimate (UTS), MPa 290 to 300
850
Tensile Strength: Yield (Proof), MPa 220 to 230
390

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 170
12
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
80
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.2
9.7
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
230
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 28 to 29
28
Strength to Weight: Bending, points 34 to 35
24
Thermal Diffusivity, mm2/s 65
3.2
Thermal Shock Resistance, points 13
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0 to 0.1
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
24.3 to 36.2
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0