MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. S44627 Stainless Steel

6018 aluminum belongs to the aluminum alloys classification, while S44627 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
24
Fatigue Strength, MPa 85 to 89
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Shear Strength, MPa 170 to 180
310
Tensile Strength: Ultimate (UTS), MPa 290 to 300
490
Tensile Strength: Yield (Proof), MPa 220 to 230
300

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
100
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
220
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28 to 29
18
Strength to Weight: Bending, points 34 to 35
18
Thermal Diffusivity, mm2/s 65
4.6
Thermal Shock Resistance, points 13
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
25 to 27.5
Copper (Cu), % 0.15 to 0.4
0 to 0.2
Iron (Fe), % 0 to 0.7
69.2 to 74.2
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0