MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. 384.0 Aluminum

Both 6023 aluminum and 384.0 aluminum are aluminum alloys. They have 84% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is 384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
74
Elongation at Break, % 11
2.5
Fatigue Strength, MPa 120 to 130
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Shear Strength, MPa 210 to 220
200
Tensile Strength: Ultimate (UTS), MPa 360
330
Tensile Strength: Yield (Proof), MPa 300 to 310
170

Thermal Properties

Latent Heat of Fusion, J/g 400
550
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 580
530
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 170
96
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
22
Electrical Conductivity: Equal Weight (Specific), % IACS 140
69

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.8
2.9
Embodied Carbon, kg CO2/kg material 8.3
7.4
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
49
Strength to Weight: Axial, points 35 to 36
32
Strength to Weight: Bending, points 40
37
Thermal Diffusivity, mm2/s 67
39
Thermal Shock Resistance, points 16
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
77.3 to 86.5
Bismuth (Bi), % 0.3 to 0.8
0
Copper (Cu), % 0.2 to 0.5
3.0 to 4.5
Iron (Fe), % 0 to 0.5
0 to 1.3
Magnesium (Mg), % 0.4 to 0.9
0 to 0.1
Manganese (Mn), % 0.2 to 0.6
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0.6 to 1.4
10.5 to 12
Tin (Sn), % 0.6 to 1.2
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0 to 0.15
0 to 0.5