MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. 772.0 Aluminum

Both 6023 aluminum and 772.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
69
Elongation at Break, % 11
6.3 to 8.4
Fatigue Strength, MPa 120 to 130
94 to 160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 360
260 to 320
Tensile Strength: Yield (Proof), MPa 300 to 310
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 580
580
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 170
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
35
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
350 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
46
Strength to Weight: Axial, points 35 to 36
25 to 31
Strength to Weight: Bending, points 40
31 to 36
Thermal Diffusivity, mm2/s 67
58
Thermal Shock Resistance, points 16
11 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
91.2 to 93.2
Bismuth (Bi), % 0.3 to 0.8
0
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 0.2 to 0.5
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.15
Magnesium (Mg), % 0.4 to 0.9
0.6 to 0.8
Manganese (Mn), % 0.2 to 0.6
0 to 0.1
Silicon (Si), % 0.6 to 1.4
0 to 0.15
Tin (Sn), % 0.6 to 1.2
0
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants