MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. AISI 440C Stainless Steel

6023 aluminum belongs to the aluminum alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11
2.0 to 14
Fatigue Strength, MPa 120 to 130
260 to 840
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 210 to 220
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 360
710 to 1970
Tensile Strength: Yield (Proof), MPa 300 to 310
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
870
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 580
1370
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
22
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
39 to 88
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 35 to 36
26 to 71
Strength to Weight: Bending, points 40
23 to 46
Thermal Diffusivity, mm2/s 67
6.0
Thermal Shock Resistance, points 16
26 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0.2 to 0.5
0
Iron (Fe), % 0 to 0.5
78 to 83.1
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.6 to 1.2
0
Residuals, % 0 to 0.15
0