MakeItFrom.com
Menu (ESC)

6023 Aluminum vs. EN 1.4527 Stainless Steel

6023 aluminum belongs to the aluminum alloys classification, while EN 1.4527 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6023 aluminum and the bottom bar is EN 1.4527 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11
40
Fatigue Strength, MPa 120 to 130
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 360
480
Tensile Strength: Yield (Proof), MPa 300 to 310
190

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 580
1360
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 11
32
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.3
5.6
Embodied Energy, MJ/kg 150
78
Embodied Water, L/kg 1180
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 39
150
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 690
95
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 35 to 36
17
Strength to Weight: Bending, points 40
17
Thermal Diffusivity, mm2/s 67
4.0
Thermal Shock Resistance, points 16
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94 to 97.7
0
Bismuth (Bi), % 0.3 to 0.8
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0.2 to 0.5
3.0 to 4.0
Iron (Fe), % 0 to 0.5
37.4 to 48.5
Magnesium (Mg), % 0.4 to 0.9
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.6 to 1.4
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Residuals, % 0 to 0.15
0